Total Positivity for Loop Groups Ii: Chevalley Generators
نویسندگان
چکیده
This is the second in a series of papers developing a theory of total positivity for loop groups. In this paper, we study infinite products of Chevalley generators. We show that the combinatorics of infinite reduced words underlies the theory, and develop the formalism of infinite sequences of braid moves, called a braid limit. We relate this to a partial order, called the limit weak order, on infinite reduced words. The limit semigroup generated by Chevalley generators has a transfinite structure. We prove a form of unique factorization for its elements, in effect reducing their study to infinite products which have the order structure of N. For the latter infinite products, we show that one always has a factorization which matches an infinite Coxeter element. One of the technical tools we employ is a totally positive exchange lemma which appears to be of independent interest. This result states that the exchange lemma (in the context of Coxeter groups) is compatible with total positivity in the form of certain inequalities.
منابع مشابه
Total Positivity in Loop Groups I: Whirls and Curls
This is the first of a series of papers where we develop a theory of total positivity for loop groups. In this paper, we completely describe the totally nonnegative part of the polynomial loop group GLn(R[t, t ]), and for the formal loop group GLn(R((t))) we describe the totally nonnegative points which are not totally positive. Furthermore, we make the connection with networks on the cylinder....
متن کاملPOSITIVITY AND THE CANONICAL BASIS OF TENSOR PRODUCTS OF FINITE-DIMENSIONAL IRREDUCIBLE REPRESENTATIONS OF QUANTUM sl(k)
In a categorification of tensor products of fundamental representations of quantum sl(k) via highest weight categories, the indecomposable tilting modules descend to the canonical basis. Projective functors map tilting modules to tilting modules implying the coefficients of the canonical basis of tensor products of finite dimensional, irreducible representations under the action of the Chevalle...
متن کاملMonomial Irreducible sln-Modules
In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.
متن کاملMatrix Generators for Exceptional Groups of Lie Type
Until recently it was impractical to use general purpose computer algebra systems to investigate Chevalley groups except for those of small rank over small fields. But computer algebra systems (such as Magma (Bosma et al. 1997) and GAP (Schönert et al. 1994)) now have the power to deal with some aspects of all finite groups of Lie type. A natural way to represent these groups is via matrices ov...
متن کاملMOR Cryptosystem and classical Chevalley groups in odd characteristic
In this paper we study the MOR cryptosystem with finite Chevalley groups. There are four infinite families of finite classical Chevalley groups. These are: special linear groups SL(d, q), orthogonal groups O(d, q) and symplectic groups Sp(d, q). The family O(d, q) splits to two different families of Chevalley groups depending on the parity of d. The MOR cryptosystem over SL(d, q) was studied by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009